Светлината се състои от елементарни частици фотони. Те нямат маса и заряд.
Близо до черните дупки съществува така наречените фотонни сфери.
Това са места, където гравитацията е толкова силна, че фотоните започват да се въртят по орбити.
Ако наблюдател попадне във фотоната сфера, той теоретически може да види своя гръб.
Архив за етикет: фотони
Брилянтните миди могат да осветяват водорасли
Миди, чийто размер може да достигне до 1,2 м, се крият в ръковинната слънчева енергосистема.
Учени от университета в Пенсилвания са установили, че техните светли преливащи клетки, наречени иридоцити са живи, за разлика от подобни клетки на пеперуди, бръмбари и птици.
Ярко сините гигански мекотели са способни да пропускат лъчите на слънчевата светлина в себе си, като в същото време осветяват водораслите.
Опитвайки се да разберат как мидата използва тази необичайна особеност, изследователите са открили, че лъскавите отразяващи клетки на гигантска мида всъщност пренасочват фотоните от слънчева светлина дълбоко в тъканта. Те леко и равномерно осветяват милиони симбиозни водорасли, които живеят там и осигуряват на мидите хранителни вещества за фотосинтезата.
Конфигурация на водорасли е много ефективна. Ако те са разположени в тъканите на мидите хоризонтално, светлината ще достигне само горните слоеве, за това водораслите се разполагат вертикално, което дава възможност да се осветяват равномерно.
Огледало удвояващо честотата на падащата светлина върху него
Изследователски екип, състоящ се от учени от Университета на Тексас в Остин и Техническия университет в Мюнхен, е разработил тънка лента метаматериал с нелинейни оптични свойства. В този случай, нелинейността на оптичните свойства на метаматериал изглежда хиляди пъти по-силна в сравнение с конвенционалните материали, които също имат подобни свойства. И като демонстрация на възможностите си в тази област, учените са създали огледало с дебелина само 400 нанометра, която отразява светлината, чиято честота е точно два пъти по-голяма от честотата на падащата светлина върху повърхността на огледалото.
Този вид на нелинейни огледала вече е направено въз основа на традиционните материали с нелинейни оптични характеристики. Но като се има предвид интензивността на падащата светлина, дебелината на структурата на огледало, огледало на базата на нелинейни метаматериали произвежда около един милион пъти повече фотони с удвоена честота в сравнение на нелинейните огледална с традиционни материали.
С помощта на комбинация от екзотично взаимодействие на електромагнитните вълни с метаматериали, може да се реализира принципно нови технологии, които могат да се използват успешно в областта на квантовите компютри и в конвенционалната електроника.
Метаматериалът с нелинейни оптични свойства се състои от последователни, повече от 100, слоя индий, галий, арсен и алуминий. Дебелината на всеки слой варира от 1 до 10 нанометра. Долната част на структурата е покрита със слой от злато, а върху горната повърхност на многослойната структура на огледалото е нанесена кръстообразна златна решетка с предварително зададена форма и размери.
Тънките слоеве от полупроводникови материали, редуващи се в структура на огледалата ограничават броя на възможни квантови състояния на електроните в материала, а кръстообразната златна структурата представлява подредени необходими резонатори, чиято честота съответства на честотата на падащата и отразена светлина.
Създаденото огледало за демонстрация е разчетено за преобразуване на вълни с дължина 8 микрометра във вълни с дължина 4 микрометра. Размерите на огледалата, резонаторите и структурата на нейната повърхност могат да бъдат проектирани така, че огледалото да работи ефективно и с други дължини на вълната от близко-инфрачервена светлина до терахерцовия диапазон.
Това откритие отваря пътя към разработването на нови оптични елементи, ултратънки, имащи подчертано нелинейни оптични характеристики. Такива обекти могат да станат основа на честотни преобразуватели и други оптични устройства, използвани при химически анализ, в областта на квантовите компютри, в медицината и в много други области.
На компютър ще се отпечатват дрехи
Иван Рухленко и неговите колеги от Департамента по електротехника и компютърни системи на Университета в Монаша, Австралия, са разработили първия в света спазер на графен и въглеродни нанотръби.
Спазер – Spazer, от английски Surface Plasmon Amplification of Radiation е плазмен наноизточник на оптично излъчване, аналогично на лазера. Спазерът генерира не фотони, а повърхностни плазмони – кохерентни електронни осцилации, които са колективни трептения на свободен електрон газ. С други думи, спазерът позволява прехвърляне на енергия с помощта на светлина. Такова прехвърляне е много ефективно и може да се използва в електронни чипове в бъдещето вместо стандартните силициеви транзистори.
Изобретателите поясняват, че модела им има няколко предимства. Предишнните спазери съдържат детайли от наночастици на злато и сребро, а сега се използва друга конструкция, без метали. Тя включва графен резонатор и усилвателен елемент от въглеродна нанотръба.
Тези материали са 100 пъти по-яки от металите, провеждат топлина и електричество, по-добре от медта и издържат на високи температури. От множеството си свойства, електрониката от въглеродни нанотръби и графен може да отпечатва плат за дрехи, който може да издържи на екстремни температурни условия, пране в перална машина и т.н.
До сега в тази област се правят експерименти, но силициеви електроника е преминала физическите граници на миниатюризация. Преходът на компоненти от графен и нанотръби ще бъде технологична революция. От тези материали ще се правят микропроцесори, памет, дисплеи и други компоненти на електронните устройства, уверяват ни авторите на научната разработка.
Квантовата левитация е възможна
Силата на Казимир привлича еднакви пластинки, но измененията на геометрията и свойствата на материала на едната от тях може да промени посоката на силите и да предизвика левитация.
Преди повече от половин век холандския физик Хендрик Казимир теоретичен изчислили, че две огледала, поставени едно срещу друго във вакуум, трябва да се привличат.
Тайнствена сила възниква от енергията на виртуални частици – фотони, които според квантовата теория непрекъснато се създават и унищожават, дори и във вакуум. Силата на привличане възниква в резултат на това, че налягането на виртуалните частици върху огледалото е по-голямо, отколкото отвътре.
Японският учен Норио Иноуе от университет в Хиого е изчислил, че при определени обстоятелства, като промяна на посоката на силата на Казимир, е напълно достатъчна, за да се повдигне много тънка пластина, т.е. да се предизвика левитация.
Оказва се, че пластинка от желязоитриев гранат – YIG с нанометрова дебелина може да се издигне на височина 0,5 микрометъра над повърхността на златна пластинка. При това отблъскващата сила нараства, ако пластинката – YIG стане още по-тънка. За сега този експеримент съществува само на книга, но той може да се извърши в лабораторни условия.
Ако изчисленията на Норио Иноуе са правилни, новото явление в квантовата механика може да се използва в различни области на науката и техниката. Например, за създаване на „левитиращи“ жироскопи, микроелектромеханични системи (MEMS), да се предотврати залепване и заглушаване на различни компоненти на наномашини, и др.